UA

Big Data и психометрия: на пороге глобальных изменений в ритейле


13.09.2017, 15:14

Онлайн-активность и язык тела, данные о затратах и автоматический анализ трендов. Как это помогает ритейлерам повысить лояльность клиентов и продажи?

В цифровую эпоху все больше наших действий оставляют отпечаток - все измеряется, отслеживается и фиксируется. Используя любой онлайн или цифровой инструмент, каждый человек генерирует огромное количество данных, которые можно структурировать, проанализировать и получить ценные инсайты. Именно этим и занимается технология Big Data, которая за последние несколько лет превратилась в мощный источник информации о стиле жизни, привычках и потребностях миллионов людей.

Сначала в понятие Big Data вкладывали только умение хранить и обрабатывать большие массивы данных, сгенерированных пользователями онлайн. Чуть позже анализ этих данных показал огромный потенциал в контексте выявления закономерностей в поведении пользователей. Это помогло таким цифровым гигантам как Facebook, Twitter, Amazon, Google кастомизировать сервисы в соответствии с потребностями и таргетировать рекламу намного эффективнее.

Осознав могущество Big Data, компании начали вкладывать ресурсы в поиск все новых источников данных и подходов к их анализу. Это уже не обязательно большие массивы информации. Сейчас мир постепенно переходит от категории "больших" к категории "наиболее ценных и качественных" данных.

Именно поиск кардинально новых источников данных и их комбинация с уже существующими для получения новых инсайтов становится основной задачей специалистов по Big Data во всем мире.

Big Data и психометрия

До недавнего времени в основе анализа данных лежало построение кругов (кластеров) на основе определенных фактов о людях (возраст, пол, увлечения, история покупок). То есть, предполагалось, что поведение всех участников соответствующего кластера похоже. Например, во время предвыборной кампании электорат разбивали на группы по возрасту, полу, географии и т.д. и определяли особенности поведения всех участников каждой из групп. Такой подход называется персонализация.

Однако, в 2016 году компания Cambridge Analytica всколыхнула мир принципиально новым подходом к работе с Big Data. Самым известным кейсом стала предвыборная кампания Дональда Трампа, для которой CA предоставила маркетинговую стратегию, основанную на анализе Big Data. Им удалось собрать по 5 тыс. фактов на каждого американца, способного участвовать в выборах, а это около 230 млн человек. Также во время праймериз Республиканской партии они использовали данные о типах личности электората, чтобы эффективнее таргетировать рекламную кампанию.

Это уже кардинально другой уровень работы с данными, который предусматривает определение типа личности на основе анализа ее действий в цифровом пространстве - социальные сети, поисковые системы, покупки, мобильные гаджеты, GPS, умные устройства. Такой подход к анализу конкретно взятого человека и построению прогнозов насчёт его индивидуального поведения, а не группы похожих людей, получил название индивидуализация.

Этот подход позволяет отслеживать и определять особенности поведения и характера, общения, географического передвижения. Именно эти данные способны дополнить информацию о стиле жизни человека инсайтами о том, как человек принимает решение, исходя из его психотипа - импульсивно или взвешенно, решительно и рационально или эмоционально; как лучше воспринимает информацию - сенсорно или интуитивно. Именно эти данные являются ключевыми для прогноза будущих действий человека. Они позволяют не только понять его мотивы, видение, восприятие мира, но и спрогнозировать его поведение и, наконец, изменить его.

Чтобы получить наиболее точный индивидуальный профиль, в идеале следует проанализировать онлайн активности вместе с невербальным языком - мимикой, жестами, языком тела, интонациями голоса. Именно такое сочетание обеспечит наиболее качественный результат. И это та проблема, с которой сталкиваются гиганты сбора индивидуальной информации о людях (Facebook, Google). Для сбора психометрической информации нужен или физический контакт, или хотя бы изображение человека, которое можно получить с помощью видеокамеры. Именно поэтому одной из важных целей запуска сервисов бесплатной аудио и видеосвязи является сбор необходимых психометрических данных о пользователях.

Считывание невербальной речи уже не является далеким будущим. Совсем недавно исследователи института Робототехники университета Карнеги-Мелон презентовали компьютер, способный распознавать фигуры и движения, в том числе рук и пальцев, многих людей одновременно и в режиме реального времени. Использование подобной технологии в сочетании с данными, полученными из других цифровых источников, может навсегда изменить индустрии, которые ориентированы на работу с потребительской аудиторией.

Одной из таких отраслей является ритейл индустрия, которая в ближайшее время может выступить основным драйвером развития технологий сбора, анализа и использования Big Data. Если для построения наиболее точных прогнозов о поведении человека нужна психометрическая информация, то ритейл индустрия имеет огромные возможности, ведь она уже имеет важнейшее условие для сбора такой информации - физический контакт с покупателем в магазине.

Big Data в ритейле: новые возможности

Получается, что именно ритейлеры имеют один из лучших контактов с аудиторией как в интернет-магазинах, так и в торговых точках. Во-первых, в отличие от онлайн, стационарные магазины посещают почти все люди, а это значит максимально возможный охват аудитории. Во-вторых, благодаря физическому контакту можно получить больше данных о человеке: его можно увидеть, услышать, отследить поведение и перемещение по магазину и т.д. Это дает достаточно полное представление о психотипе человека, а вместе с информацией о его материальном положении и предпочтениях, которую ритейлеры также получают, можно достаточно точно спрогнозировать, что будет любить и покупать конкретный потребитель.

In-store аналитика

За один визит в магазин покупатель способен сгенерировать тысячи уникальных показателей, зафиксированных различными камерами и сенсорами. С помощью анализа можно понять, куда он собирается пойти, что именно привлекает его внимание, как он делает выбор продукта и сколько времени ему требуется на это, покупает он четко по списку или, возможно, импульсивно. Все эти данные могут быть полезны при планировании раскладки, разработки рекламных и промо-кампаний и материалов и т.д.

Кроме того, такой подход способен предупреждать кражи - например, анализируя язык тела посетителя, выражение лица, особенности передвижения по магазину, компьютер может посылать предупредительные уведомления охранникам для пристальной проверки.

Прогнозирование трендов еще до их появления

С помощью технологии Big Data можно прогнозировать тренды и спрос на определенные категории и соответственно планировать закупки и поставки. При этом учитывается множество факторов, которые способны влиять на спрос - информация о совершенных продажах, сообщения в социальных сетях, поисковые запросы, экономическая ситуация в стране и даже погодные условия.

Благодаря этому, потребители всегда смогут найти нужный товар по более доступной цене, а новинки будут максимально отвечать их ожиданиям и вкусам. Не исключено, что именно ритейл будет диктовать глобальные потребительские тренды в ближайшее время и центр тяжести сместится от производителей к ритейлерам.

Полную версию колонки читайте на Kyivstar Business Hub.

Валентин Кропов, Engineering Director SoftServe

Если Вы заметили орфографическую ошибку, выделите её мышью и нажмите Ctrl+Enter.
Статьи, публикуемые в разделе "Мнения", отражают точку зрения автора и могут не совпадать с позицией редакции LIGA.net
Вакансии
Больше вакансий
Project Manager (впровадження CRM)
Киев Група компаній ЛІГА
Редактор стрічки новин
Киев Медіа холдинг Ligamedia
Head of PR
Киев Група компаній "ЛІГА"
Разместить вакансию

Комментарии

Последние новости
Популярное